Tackling Drug Resistant Infections: Mechanisms of Antimicrobial Resistance

Christopher J Harrison MD
Children’s Mercy Hospital
UMKC
Kansas City, MO
COI Statement

• Grant Funding
 – Johnson and Johnson
 – Cubist

• No other potential conflicts
“We have a Problem Houston”

• National Nosocomial Infection Surveillance System (NNIS)
 – UTI > Pneumonia > BSI
 – But 67% of HAI deaths due to pneumonia and BSI

• Most common lethal organisms
 – E. coli, Pseudomonas, MRSA
 – Honorable mention to acinetobacter

• Absolute number of such HAIs up in past 10 yrs
 – MRSA the major factor < 18 yos

Klevenes et al. CID 2008 47:927-30
Empiric Antibiotics (Abx) for Hospital Acquired Infections (HAI)

Goal: Reduced mortality and minimized resistance
- Early aggressive, appropriate empiric Rx and de-escalation

1. Severe sepsis or septic shock - Critical determinants
 - Initial appropriate Abx and source control

2. HAI bloodstream infection
 - Appropriate empiric Abx covers MDR gram-neg bacteria and MRSA

3. Any serious HAI from suspected gram-neg bacteria
 - Appropriate empiric Rx = dual coverage including aminoglycoside

4. Vancomycin obsolete for treating MRSA

5. All immunocompromised patients’ infections
 - Cover for hospital acquired pathogens until proven otherwise

Hospital Care Associated Infection Summit. CID 2008. Oct; 47 (suppl 2): S57
Case 1

• 15 yo CF patient with OLT 3 yrs ago
 – Still on modest immune suppression
 – Pulmonary exacerbations X 5 in past 2 yrs
 • Frequent broad spectrum antibiotics used
 • No central lines in place

• Presenting Problem:
 – Fever, emesis and diarrhea initially
 – Mental status changes later
 – Shock with respiratory failure now

– Previously colonized with MRSA and VRE
Empiric Antibiotics Case 1

• Gm positive coverage
 – Vancomycin, Linezolid, or Clindamycin?

• Gram negative coverage
 – Ceftazidime, cefepime, meropenem, or pipericillin/tazobactam?
 – Add gentamicin or not?
Antibiotic Mechanisms

Cell Wall Synthesis
- Vancomycin
- Penicillins
- Cephalosporins
- Monobactams
- Carbapenems

DNA Gyrase (Replication)
- Quinolones
- Nalidixic Acid

RNA Dependent DNA Synthesis
- Rifampin

Protein Synthesis 50s ribosomes
- Macrolides
- Azolides
- Clindamycin
- Ketolides

Protein Synthesis 30s ribosomes
- Tetracyclines
- Aminoglycosides
- Spectinomycin

Folic Acid Path
- Trimethoprim
- Sulfonamides
- PABA

Cell Membrane
- Polymyxins

Initiation Complex
- Linezolid (Unique)

30s ribosomes

50s ribosomes

DNA

mRNA
Bacterial Tools For Resistance

1. Reduce Abx access to target
 - Less entry – Porins
 - More exit – Efflux pumps, e.g. Mef A

2. Alter Abx target
 - PBPs, Topoisomerase, gyrase, DHFA,
 - Ribsomal binding sites, e.g. ErmB, ErmT

3. Inactivate Abx
 - Beta lactamases, e.g. TEM-1
 • ESBL or Amp C
 - Aminoglycosidase, e.g. Adenyltransferase
Empiric Antibiotics Case 1

- **Gm positive coverage**
 - Linezolid

- **Gram negative coverage**
 - Cefepime,
 - Add gentamicin
Culture Results

- Blood Cultures X 2
 - GPC at 8 hours

MRSA
CA- or HA-MRSA?

<table>
<thead>
<tr>
<th>BC MIC</th>
<th>ug/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCN</td>
<td>>16</td>
</tr>
<tr>
<td>Oxa</td>
<td>>8</td>
</tr>
<tr>
<td>Cefazolin</td>
<td>>8</td>
</tr>
<tr>
<td>Amox/clav</td>
<td>>8</td>
</tr>
<tr>
<td>Clinda</td>
<td>8</td>
</tr>
<tr>
<td>Erythro</td>
<td>16</td>
</tr>
<tr>
<td>Cipro</td>
<td>8</td>
</tr>
<tr>
<td>T/S</td>
<td>40</td>
</tr>
<tr>
<td>Vanco</td>
<td>1.0</td>
</tr>
<tr>
<td>Rifampin</td>
<td>0.5</td>
</tr>
<tr>
<td>Linezolid</td>
<td>1.0</td>
</tr>
<tr>
<td>Gent</td>
<td><256</td>
</tr>
</tbody>
</table>
MRSA Antibiogram, CMH 2007 -08

* Not useful as sole therapy, resistance almost immediate

% Susceptible

Cj Harrison, Unpublished
<table>
<thead>
<tr>
<th>health care contact</th>
<th>HA-MRSA</th>
<th>CA-MRSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>health care contact</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>mean age at infection</td>
<td>older</td>
<td>younger</td>
</tr>
<tr>
<td>skin and soft tissue infections</td>
<td>35%</td>
<td>75%</td>
</tr>
<tr>
<td>antibiotic resistance</td>
<td>many agents</td>
<td>some agents</td>
</tr>
<tr>
<td>resistance gene</td>
<td>SCCmec Types I, II, III</td>
<td>SCCmec Type IV, V</td>
</tr>
<tr>
<td>strain type</td>
<td>USA 100 and 200</td>
<td>USA 300 and 400</td>
</tr>
<tr>
<td>PVL toxin gene</td>
<td>rare (5%)</td>
<td>frequent (almost 100%)</td>
</tr>
</tbody>
</table>
Inducible Macrolide-Lincosamide Resistance in *S. aureus* “D-Zone”
Decelerate Antibiotics Case 1

• Gm positive coverage – HA-MRSA
 – Linezolid
 – Consider rifampin

• Gram positive synergy?
 – Add gentamicin
Glycopeptide class

- Spectrum of activity:
 - Gram-positives
 - Staphylococcus (MRSA)
 - Enterococcus
 - Streptococci

- Elimination by renal route
- PK
 - 2-3 compartment drug
 - T1/2 h 6-12 h

Vancomycin

Recent reports of treatment failures or very slow responses
Vanco Resistance
How Vanco Works

Vancomycin-Sensitive Bacterium
Cell Wall

Vancomycin Binds, Cell Wall Does Not Form

Vancomycin-Resistant Bacterium
Cell Wall

Vancomycin Cannot Bind, Cell Wall Unaffected

Legend:
- Vancomycin
- Alanine-Alanine
- Alanine-Lactate
MRSA vs Vancomycin
“MIC CREEP”

- CLSI recently lowered vanco breakpoints
 - Susceptible \(\leq 2 \text{ ug/mL} \)
 - Intermediate 4-8 \(\text{ug/mL} \)
 - Resistant \(\geq 16 \text{ ug/mL} \)
- Vanco resistance (VRSA) remarkably rare
 - Vanco-intermediate (VISA) also infrequent
- Nexus of 2 factors raises concern
 1. MIC creep
 - gradually reduced susceptibility to vancomycin
 2. Poor response when MICs of 1-2.0 \(\text{ug/mL} \)
 - Particularly at 2 \(\text{ug/mL} \)

Derezenski. CID 2007; 44:1543–8
Choose Wisely

<table>
<thead>
<tr>
<th>Vancomycin MIC (ug/ml)</th>
<th>Breakpoint category</th>
<th>Would you use vanco?</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.5</td>
<td>Susceptible</td>
<td>a. Yes / No</td>
</tr>
<tr>
<td>0.5</td>
<td>Susceptible</td>
<td>b. Yes / No</td>
</tr>
<tr>
<td>1.0</td>
<td>Susceptible</td>
<td>c. Yes / No</td>
</tr>
<tr>
<td>2.0</td>
<td>Susceptible</td>
<td>d. Yes / No</td>
</tr>
<tr>
<td>4.0</td>
<td>Intermediate</td>
<td>e. Yes / No</td>
</tr>
<tr>
<td>8.0</td>
<td>Intermediate</td>
<td>f. Yes / No</td>
</tr>
</tbody>
</table>
Hacking away at Vanco

- Peak concentration = 30 mg/L
- 50% bound = 15 mg/L
- Dimerization = 7.5 mg/L
- Tissue barriers = 0.375 – 5.0
- MIC$_{90}$ of MRSA = 2.0 mg/L

- If MIC = >0.5 mg/L and inoculum high
 - Confidence in clinical success is less
<table>
<thead>
<tr>
<th></th>
<th>Vanc MIC < 1</th>
<th>Vanc MIC = 1-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success rate</td>
<td>55.6%</td>
<td>9.5%</td>
</tr>
<tr>
<td>(Sakoulas et al 2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital LOS</td>
<td>10 days</td>
<td>14 days</td>
</tr>
<tr>
<td>(MacLayton et al 2006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End of therapy response</td>
<td>85%</td>
<td>62%</td>
</tr>
<tr>
<td>(Hidayat et al 2006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eradication rate</td>
<td>77%</td>
<td>21%</td>
</tr>
<tr>
<td>Moise et al 2007</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
New Trough Vanco Recs

• Traditional
 - 5-10 ug/mL

• Since MIC Creep
 - 10-15 ug/mL

Lodise et al AAC 2008 52:1330
High Dose Vanco Adult Toxicity

Lodise et al. AAC 2008;52:1330-6
Other Culture Results

- **Urine culture**
 - *E. faecium*

- **Stool Culture**
 - *E. faecium*

<table>
<thead>
<tr>
<th>Urine and Stool</th>
<th>MIC ug/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCN</td>
<td>>16</td>
</tr>
<tr>
<td>Cefazolin</td>
<td>>8</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>>8</td>
</tr>
<tr>
<td>Clinda</td>
<td>8</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>-</td>
</tr>
<tr>
<td>Cipro</td>
<td>8</td>
</tr>
<tr>
<td>T/S</td>
<td>-</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>8</td>
</tr>
<tr>
<td>Rifampin</td>
<td>-</td>
</tr>
<tr>
<td>Linezolid</td>
<td>1.0</td>
</tr>
</tbody>
</table>

VRE
Genes Conveying Vanco Resistance in Enterococcus

<table>
<thead>
<tr>
<th>Phenotype Vanco MIC (µg/mL)</th>
<th>VanA</th>
<th>VanB</th>
<th>VanC</th>
<th>VanD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teico MIC (µg/mL)</td>
<td>64 to >1000</td>
<td>4 to 1000</td>
<td>2 to 32</td>
<td>64</td>
</tr>
<tr>
<td>Expression</td>
<td>Inducible</td>
<td>Inducible</td>
<td>Inducible</td>
<td>Inducible</td>
</tr>
<tr>
<td>Location of R genes</td>
<td>Plasmids</td>
<td>Chromosome (plasmids)</td>
<td>Chromosome</td>
<td>?</td>
</tr>
<tr>
<td>Transfer by conjugation</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mobile element</td>
<td>Tn 1546</td>
<td>Tn 1547</td>
<td>–</td>
<td>?</td>
</tr>
<tr>
<td>Modified target</td>
<td>d-Ala-d-Lac</td>
<td>d-Ala-d-Lac</td>
<td>d-Ala-d-Ser</td>
<td>d-Ala-d-Lac</td>
</tr>
<tr>
<td>Species</td>
<td>E. faecalis</td>
<td>E. faecalis</td>
<td>E. faecalis</td>
<td>E. faecium</td>
</tr>
<tr>
<td></td>
<td>E. mundtii</td>
<td></td>
<td>E. faecium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. faecium</td>
<td></td>
<td></td>
<td>E. faecium</td>
</tr>
<tr>
<td></td>
<td>E. raffinosus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. avium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. gallinarum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. durans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. casseliflavus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E. fallinarum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E. casselilavus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E. flavescens</td>
<td></td>
</tr>
</tbody>
</table>
Enterococcal Vancomycin Resistance

Conveys resistance by producing a modified D-ala D-ala molecule to which vancomycin cannot bind.

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Genotype (resistance operon present)</th>
<th>Vancomycin MIC (µg/mL)</th>
<th>Teicoplanin MIC (µg/mL)</th>
<th>Expression</th>
<th>Ability to transfer resistance</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>VanA</td>
<td>vanA</td>
<td>64->1000</td>
<td>16-512</td>
<td>Inducible</td>
<td>Yes</td>
<td>Enterococcus faecium, E faecalis, E avium, E gallinarum, E durans, E mundtii, E casseliflavus, E raffinosus, E hirae</td>
</tr>
<tr>
<td>VanB</td>
<td>vanB</td>
<td>4-1000</td>
<td>0.25-2</td>
<td>Inducible</td>
<td>Yes</td>
<td>Enterococcus faecium, E faecalis, E gallinarum, E durans</td>
</tr>
</tbody>
</table>
New Sheriffs in Town?

Daptomycin - cyclic lipopeptides
Not for pulmonary issues
Surfactant inactivates

Linezolid - Oxazolidinone
Expensive
Anemia, neutropenia, Thrombocytopenia

Tigecycline
Not FDA Pediatric approved

Ceftobiprole - 5th generation Cephalosporin
Experimental

New Sheriffs in Town?
Dalbavancin
Semi-synthetic glycopeptide

• Long ½ life = 200-300hrs – once weekly dosing
• In vitro superior to vancomycin and teicoplanin
• Excellent activity vs staphylococci
 – Bactericidal for staphylococci
 – Including MRSA, some GISA, and CoNS
 – Resistance to this is not readily developed in vitro
• Active vs teicoplanin-nonsusceptible CoNS
 – MIC range, 0.03-0.25 mug/mL
• Inhibits van B enterococci
 – MIC range, 0.03-0.12 mug/mL
• Van A enterococcal strains susceptible
 – MIC(50), 16 mug/mL
Case 2

- 7 yo s/p spinal cord injury
 - Neurogenic bladder
 - Multiple UTIs in past 3 yrs
 - Last 2 UTIs treated with ceftazidime
 - Macrodantin prophylaxis

- Problem:
 - High fever, appears ill, hypotension
 - Catheterized urine specimen has pyuria and gram negative rods
Empiric Antibiotics Case 2

• Gm positive coverage
 – Vancomycin, Linezolid, or Clindamycin?

• Gram negative coverage
 – Ceftazidime, cefepime, meropenem, or pipericillin/tazobactam?
 – Add aminoglycoside or not?
Empiric Antibiotics (Abx) for Hospital Acquired Infections (HAI)

Goal: Reduced mortality and minimized resistance
- Early aggressive, appropriate empiric Rx and de-escalation

1. Severe sepsis or septic shock - Critical determinants
 - Initial appropriate Abx and source control

2. HAI bloodstream infection
 - Appropriate empiric Abx covers MDR gram-neg bacteria and MRSA

3. Any serious HAI from suspected gram-neg bacteria
 - Appropriate empiric Rx = dual coverage including aminoglycoside

4. Vancomycin obsolete for treating MRSA

5. All immunocompromised patients’ infections
 - Cover for hospital acquired pathogens until proven otherwise

Hospital Care Associated Infection Summit. CID 2008. Oct; 47 (suppl 2): S57
Empiric Antibiotics Case 2

- Gm positive coverage
 - Vancomycin? YES

- Gram negative coverage
 - Ceftriaxone, Meropenem, or pipericillin/tazobactam? Meropenem
 - Add aminoglycoside? YES
Culture Results

- Blood Cultures X 2
 - GNR at 12 hours

- Urine culture
 - GNR at 24 hours

E.Coli
 ESBL producer

<table>
<thead>
<tr>
<th>BC and Urine Cult</th>
<th>MIC ug/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amp</td>
<td>>64</td>
</tr>
<tr>
<td>Pip/Tazo</td>
<td>2.0</td>
</tr>
<tr>
<td>Meropenem</td>
<td>0.5</td>
</tr>
<tr>
<td>Cefazolin</td>
<td>>64</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>>256</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>>256</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>16</td>
</tr>
<tr>
<td>Cipro</td>
<td>8</td>
</tr>
<tr>
<td>T/S</td>
<td>320</td>
</tr>
<tr>
<td>Amikacin</td>
<td>1.0</td>
</tr>
</tbody>
</table>

E.Coli is an ESBL producer.
Decelerate Antibiotics Case 2

• Gm positive coverage
 – None

• Gram negative coverage
 – Meropenem, or pipericillin/tazobactam
 – Add aminoglycoside
Beta-Lactam Vulnerable Site

Beta-lactamase site of Hydrolysis

Acyl Side Chain

Beta-Lactam Ring

Thiazolidine Ring

Dihydrothiazidine Ring

Beta-lactamase site of Hydrolysis
Beta-Lactam Resistance in Gram(-) Bacteria

Intramembranous β-lactamase inactivates β-lactam antibiotics

Clavulanic acid irreversibly binds β-lactamase protecting β-lactam antibiotics

Peptidoglycan cell wall

2 Plasma membranes

Porin mutation: Reduced size of channels inhibits antibiotic entry
Extended Spectrum β-Lactamases (ESBLs)

- Hydrolyze mono- & β-lactam antibiotics
 - From TEM-1 or SHV-1 broad-spectrum β-lactamases
 - New families: CTX-M and OXA enzymes
 - Often on plasmids & transferable strain-strain or spp.-spp.
- Co-habit plasmids with AmpC β-lactamases
- Suspect when MIC >2mg/L for 3rd gen Cephs
- Recent increased prevalence
 - Classic - *E. coli* and *K. pneumoniae*
 - New - *Enterobacter, pseudomonas, proteus, salmonella, Citrobacter* spp, *Morganella morganii, Serratia marcescens, Shigella dysenteriae, Burkholderia cepacia, and Capnocytophaga*

Patterson J. Ped Infect Dis J: 21(10) 2002 pp 957-959
ESBL Confirmation

• Disk Diffusion Methods
 – Home made
 • Augmentin® 60 mg disc or Timentin® 85 mg disc near cefotaxime 5 mg disc
 • Clear synergy zone or elliptical clear area between discs
 – BBL Kit 90-94% sensitive

• ESBL Etest
 – 98% sensitive with cefepime-clavulanate
 – 83% with cefotaxime-clavulanate
 – 74% with ceftazidime-clavulanate

• Automated systems
 – Vitek

ESBL Tests

Figure 1a: Organism showing enhanced zone of inhibition between ceftazidime/cefotaxime and clavulanic acid disc indicating positive ESBL.
Clinical - ESBL

- Clinical Infections - Singly or outbreaks
 - Critical care units, CF & Transplant Patients
 - Increase Rx cost prolong hospital stays

- Important reservoirs
 - Chronic care facility patients
 - Ambulatory patients w chronic conditions

Drugs for ESBL Producers

- **Meropenem** – best bet (95%)
 - Generally resistant to ESBL
 - Penetrates CSF, bone, peritoneal fluid
 - PD requirement – 30% time > MIC
- **Piperacillin/tazobactam** (~85%)
- **Aminoglycosides** – often resistant
 - Tobramycin more reliable in some locales
- **Cephamycins** – N.B. AmpC inactivates these
 - Cefoxitin or cefotetan
- **Quinolones**- increasing resistance
 - Ciprofloxacin only Ped approved quinolone - for complicated UTI’s
- **NEVER** Cephalosporins
 - 54% fail therapy even when MIC ≤8 μg/ml

Case 3

- 6 mos old former 24-weeker
 - Mother is Iraq Army Veteran
 - Hospitalized since birth
 - S/P IVH, NEC, chronic lung disease
 - VP shunt for hydrocephalus
 - Current shunt is his 3rd
 - Recent *S. aureus* infection
 - External ventriculostomy in place X 7 days

- Problem:
 - New fever
 - Ventricular fluid has 1,000 WBC, 90% PMN and gram negative rods on smear
Empiric Antibiotics Case 3

• Gm positive coverage
 – Vancomycin, Linezolid, or Clindamycin?

• Gram negative coverage
 – Ceftazidime, cefepime, meropenem, or pipericillin/tazobactam?
 – Add aminoglycoside or not?
Empiric Antibiotics (Abx) for Hospital Acquired Infections (HAI)

Goal: Reduced mortality and minimized resistance
- Early aggressive, appropriate empiric Rx and de-escalation

1. Severe sepsis or septic shock - Critical determinants
 - Initial appropriate Abx and source control

2. HAI bloodstream infection
 - Appropriate empiric Abx covers MDR gram-neg bacteria and MRSA

3. Any serious HAI from suspected gram-neg bacteria
 - Appropriate empiric Rx = dual coverage including aminoglycoside

4. Vancomycin obsolete for treating MRSA

5. All immunocompromised patients’ infections
 - Cover for hospital acquired pathogens until proven otherwise

Hospital Care Associated Infection Summit. CID 2008. Oct; 47 (suppl 2): S57
Empiric Antibiotics Case 3

• Gm positive coverage
 – Vancomycin

• Gram negative coverage
 – Ceftazidime, cefepime, meropenem, or pipericillin/tazobactam?
 – Add aminoglycoside or not?
Culture Results

- Blood Cultures X 2
 - GNR at 12 hours

- Urine culture
 - GNR

Acinetobacter baumannii
Amp C and ESBL producer

BC and MIC Urine Cult ug/mL
- Amp >64
- Pip/Tazo 2.0
- Meropenem 0.5
- Cefazolin >64
- Cefotaxime >256
- Ceftazidime >256
- Gentamicin 16
- Cipro 8
- T/S 320
- Amikacin 1.0
- Colistin 0.25
Decelerate Antibiotics Case 3

• Gm positive coverage
 – None

• Gram negative coverage
 – Colistin
 – Amikacin
A. Baumannii – A.K.A

- Achromobacter anitratus
- Achromobacter mucosus
- Alcaligenes haemolysans
- Bacterium anitratum
- Diplococcus mucosus
- Herellea vaginicola
- Micrococcus calcoaceticus
- Mima polymorpha
- Moraxella Iwoffi
 - Var. glucidolytica
- Neisseria winogradskyi
A. baumannii Molecular Resistance Mechanisms

- Various resistance phenotypes
 - Mutations of PBPs
 - Alterations of membrane permeability
- β-lactamases most common
 - Chromosomal or on plasmids
 - Class A, B, and D β-lactamases
 - Extended-spectrum β-lactamase (ESBL)
Resistance to Fluoroquinolones

Mutant DNA gyrase & topoisomerase enzymes
Fluoroquinolone unable to block DNA supercoiling or packaging

Porin Mutation: Reduces cell wall permeability, inhibits entry

Bacterial efflux pumps
Fluoroquinolone excreted
AmpC Inducible β-lactamases

- **Parent** = Chromosomal but now on Plasmid
 - Repressed until see substrate → hyper-producers
- **Functional group 1** (Bush *et al*, 1995)
- Not inhibited by clavulanic acid – may also have ESBL
 - Enterobacter, *Serratia*, *Citrobacter*, *Aeromonas*, *Providencia*, *Morganella*, *Hafnia* – “ESCAPPM”
 - Resistant to 3rd generation cephs & amox/clav or ticar/clav
- **Functional group 2e**
 - Inhibited by clavulanic acid
 - *Proteus vulgaris*
 - Susceptible to: Clav combos, ceftzidime
- **Test**: Flat inhibitory zone of cefotaxime 5 mg disc near imipenem 10 mg disc
MDR A. baumannii

• Traditionally
 – Nosocomial pneumonia

• New
 – CNS, skin and soft tissue, and bone

• typically resistant to
 – Aminoglycosides
 – Antipseudomonal penicillins
 – Carbapenems
 – Cephalosporins
 – Quinolones.
It’s the “Next Big Bad Thing”

- **A. baumannii** strains
 - Often resistant to all known antibiotics
 - Uncanny prolonged survival in hospital
 - Up to 5 months
 - Potentiates ability for nosocomial spread
 - A sentinel event
 - Needs attention Infection Control Team

- Colistin plus amikacin here
 - Consider intrathecal if not clearing soon

- Tigecycline, carbapenem or cefepime may have utility in some cases
Empiric Antibiotics (Abx) for Hospital Acquired Infections (HAI)

Goal: Reduced mortality and minimized resistance
- Early aggressive, appropriate empiric Rx and de-escalation

1. Severe sepsis or septic shock - Critical determinants
 - Initial appropriate Abx and source control

2. HAI bloodstream infection
 - Appropriate empiric Abx covers MDR gram-neg bacteria and MRSA

3. Any serious HAI from suspected gram-neg bacteria
 - Appropriate empiric Rx = dual coverage including aminoglycoside

4. Vancomycin obsolete for treating MRSA

5. All immunocompromised patients’ infections
 - Cover for hospital acquired pathogens until proven otherwise

Hospital Care Associated Infection Summit. CID 2008. Oct; 47 (suppl 2): S57