Written by: Pui-Ying Iroh Tam, MD

 Previous PIDS newsletters have included worthy and weighty communications on issues of profound importance, from vaccinations to antimicrobial stewardship. Certainly, part of the mission of PIDS is to 'care for children worldwide, through clinical care, education, research and advocacy,' and those are compelling problems that we hope to address and overcome in this generation. However, what has occupied my thoughts more recently have been more banal thoughts of billing codes.

Now, to be clear, I have never before had any interest in billing. I never received any orientation nor training on this as a medical student, resident, or fellow. To me this was the antithesis of why I went into medicine, something I regarded as another bureaucratic hurdle in order to complete my documentation.

However, I have developed a keen interest in the International Classification of Diseases, 10th Edition (ICD-10), which was scheduled to go into effect on 1st October, 2014, but has now been pushed back to 2015. With these codes, which include codes for new procedures and diagnoses that improve the information available for payment purposes, the healthcare delivery system will be transformed. As the secretary of the Department of Health and Human Services, Kathleen Sebelius, wrote, "ICD-10 is foundational for building a modernized health care system that will facilitate broader access to high quality care."

What has fascinated me most has been the new, expanded medical billing codes designed to provide greater detail in describing illnesses, injuries, and treatments. The 10th Edition was evaluated by a technical advisory panel in consultation with physician groups and clinical coders, and overseen by the World Health Organization. The main intent behind ICD-10 is to serve as a tool in classifying morbidity data for medical care review, indexing health records, and for basic health statistics; however, in the United States the codes are also used for billing purposes.

The uniqueness of some of the billing codes has captivated me. I have been enthralled by how one could have envisioned a use for a medical billing code for burn due to water skis on fire (V91.07XD) to being bitten by an Orca whale (W56.21XS – being struck by an Orca whale is a different code W56.22XS). What about a code for problems in relationship with spouse or partner (Z63.0)? Can I use it to bill myself when I've had a fight? It seems it would be difficult to outdo one of the earlier ICD classifications of 'visitation from God' as a cause for death; however, the ICD-10 code of 'asphyxiation as a result of encasement in a discarded refrigerator' (T71.231D) may have done just that.

Humor aside, these billing codes lead me to reflect on how the field of pediatric infectious diseases is recognized and remunerated. With the newest edition, 18,000 ICD codes have now expanded to around 140,000 codes, and one gets a sense from perusing this how much more weight is placed on surgical services. For balloon accidents and spacecraft injuries, there are 14 results each. There are 27 ICD-10 codes for various injuries to the nose, from abrasion to blister to contusion to puncture wound to laceration to nonvenomous insect bite. Conversely, when I typed in 'infection,' there were only 103 results. And not anything as exciting as involving chicken coops (Y92.72) or opera houses (Y92.253) or bunjee jumping (Y93.34). About half were infection billing codes associated with orthopedic procedures.

Therein lies the limitation of billing codes and the problematic orientation of insurance companies to our specialty as a whole. Why is there no billing code for severe infection caused by an esoteric organism that was identified by an astute physician? What about a billing code for quality of life improved and illness prevented due to immunization? Instead, we have a code for infection following immunization (T88.0XXS).

Given our specialty's relative adeptness at extracting details in the history, perhaps the ICD-10 codes are beckoning us to coding greatness. Whom else would be better able to identify whether an event occurred on the interstate highway (Y92.411), parkway (Y92.412), state road (Y92.413), sidewalk (Y92.480), parking lot (Y92.481), bike path (Y92.482) railroad track (Y92.85) or exit ramp (Y92.415)? Curiously, ICD-10 has 13 codes for immunization that were not administered because of various reasons, including due to patient refusal (Z28.21) and caregiver refusal (Z28.82). Billing for something that was not done? Perhaps that is progress.

References

Anna Wilde Mathews, Wall Street Journal, "Walked Into a Lamppost? Hurt While Crocheting? Help Is on the Way." 13th September, 2011.

US Department of Health and Human Services, News release. 24th August, 2012.

Erin McCann, Health IT news, "8 zaniest ICD-10 codes." 25th July, 2013.

Andrew Pollack, New York Times, "Roughed Up by an Orca? There's a Code for That." 29th December, 2013.

ICD-10 codes, http://www.cdc.gov/nchs/data/icd/Detailed%20List%20of%20Codes%20Exempt%20from%20POA.pdf accessed 4th February, 2014

Chris Dimick, Journal of AHIMA, "Senate passes ICD-10 delay bill." 31st March, 2014.

 

 

 

Written by: Matthew Kronman, MD, MSCE 

Simon TD, Mayer-Hamblett N, Whitlock KB, Langley M, Kestle JRW, Riva-Cambrin J, Rosenfeld M, Thorell EA. Few Patient, Treatment, and Diagnostic or Microbiological Factors, Except Complications and Intermittent Negative Cerebrospinal Fluid (CSF) Cultures During First CSF Shunt Infection, Are Associated with Reinfection. J Pediatric Infect Dis Soc. 2014 Mar;3(1):15-22.

Summary

In the March 2014 issue of the Journal of the Pediatric Infectious Diseases Society, Simon and colleagues report the findings of their retrospective cohort study of children at Primary Children’s Medical Center with first ventricular shunt infection. The authors compiled an extensive dataset through meticulous chart review, gathering records on 118 children who had a first shunt placed between January 1, 1997 and October 12, 2006, and who developed a first shunt infection prior to December 31, 2006. The authors then collected patient, treatment, and surgical factors to evaluate which factors were associated with developing a second shunt infection prior to June 28, 2010. The overall median follow-up time was 5.7 years, and 31 (26%) subjects developed a shunt re-infection.

The authors evaluated numerous factors, but found only three factors associated with risk of re-infection in their adjusted multivariate model: use of ventriculoatrial shunts (adjusted hazard ratio [aHR] 4.0, 95% confidence interval [CI] 1.3-10.0) or complicated shunts, defined as shunts involving multiple reservoirs or connections (aHR 7.7, 95% CI 1.2-28.1); complications – including shunt malfunction, hemorrhage, and abdominal abscess – after first infection (aHR 3.1, 95% CI 1.2-7.0); and what the authors termed "intermittently negative CSF cultures" – i.e., having positive CSF cultures, followed by negative cultures, and then having further subsequent positive cultures (aHR 3.2, 95% CI 1.3-7.0). In a sensitivity analysis, higher white blood cell count in the CSF at first infection was also associated with re-infection. None of the many other variables that were evaluated - including pathogen isolated at first infection, duration of first infection treatment, concordance of antibiotics with pathogen identified, use of intrathecal antibiotics, or surgical approach - were associated with the risk of developing re-infection.

Commentary

Ventricular shunt infections are a common reason for inpatient Infectious Disease consultation. It can be difficult to know how intensively to evaluate for a shunt infection in patients with ventricular shunts who have only non-specific symptoms such as fever. Once identified, ventricular shunt infections often lead to substantial morbidity, including invasive surgery and prolonged hospitalization. While the 2004 IDSA meningitis guidelines mention ventricular shunt infections, there is little current guidance for Infectious Disease physicians to assist in treating these infections in children and preventing recurrences [Tice et al.].

This study builds upon our existing knowledge of factors associated with re-infection after a first ventricular shunt infection. Prior pediatric multicenter work has demonstrated a similar 26% rate of re-infection, and suggested that duration of antibiotic treatment is not associated with risk of ventricular shunt infections recurrence [Kestle et al.]. The rate of infection relapse or re-infection in children appears to be higher than that in adults [Conen et al.]. Retrospective studies to determine whether use of antibiotic-impregnated catheters can reduce the risk of subsequent shunt infection have had mixed results, with some studies demonstrating no benefit [Kan et al.], and others demonstrating a reduction in shunt infections [Parker et al.].

In the Simon et al. study, duration of antimicrobial therapy was not associated with re-infection risk, and the median duration was nearly identical between the groups that did (15 days) or did not (13 days) develop re-infection. Likewise, rates of intrathecal antibiotic and rifampin use were similar between the two groups but very low in both groups, limiting the ability to evaluate the impact of these factors. Future studies may elucidate whether there are patients who could safely receive a shorter duration of antibiotics without increasing the risk of re-infection, and whether intrathecal antibiotics or adjuvant rifampin decrease the risk of re-infection.

Notably, none of the factors associated with re-infection in this study were ones that Infectious Disease physicians might typically influence. The association of complex and ventriculoatrial shunts with re-infection seems logical, given the difficulty and likely increased operative time for these procedures; Infectious Disease physicians may be able to discuss these data with their neurosurgeon colleagues to help them determine what replacement shunt position is best after a first infection. It is not clear, however, why intermittent negative CSF cultures predict shunt re-infection. These intermittent negative cultures may simply suggest factors associated with a more difficult infection to clear, such as a larger burden of organism, more loculated and therefore intermittently draining collections, subtherapeutic antibiotic penetration and levels, or organisms that produce biofilms.

While more work needs to be done to illuminate the optimal treatment of ventricular shunt infections in children, a history of uncommon shunt types and prior complications or intermittently negative cultures with a prior infection should all increase the suspicion for shunt re-infection. After an infection of a ventriculoatrial shunt, it may also be worth placing the new shunt in a non-atrial position, if feasible.

References:

  1. Simon TD, Mayer-Hamblett N, Whitlock KB, Langley M, Kestle JRW, Riva-Cambrin J, Rosenfeld M, Thorell EA. Few Patient, Treatment, and Diagnostic or Microbiological Factors, Except Complications and Intermittent Negative Cerebrospinal Fluid (CSF) Cultures During First CSF Shunt Infection, Are Associated with Reinfection. J Pediatric Infect Dis Soc. 2014 Mar;3(1):15-22.
  2. Tice AD, Rehm SJ, Dalovisio JR, et al. Practice guidelines for outpatient parenteral antimicrobial therapy. IDSA guidelines. Clin Infect Dis 2004 Jun 15;38(12):1651-72.
  3. Kestle JR, Garton HJ, Whitehead WE, et al. Management of shunt infections: a multicenter pilot study. J Neurosurg 2006 Sep;105(3 Suppl):177-81.
  4. Conen A, Walti LN, Merlo A, Fluckiger U, Battegay M, Trampuz A. Characteristics and treatment outcome of cerebrospinal fluid shunt-associated infections in adults: a retrospective analysis over an 11-year period. Clin Infect Dis 2008 Jul 1;47(1):73-82.
  5. Kan P, Kestle J. Lack of efficacy of antibiotic-impregnated shunt systems in preventing shunt infections in children. Childs Nerv Syst 2007 Jul;23(7):773-7.
  6. Parker SL, Attenello FJ, Sciubba DM, et al. Comparison of shunt infection incidence in high-risk subgroups receiving antibiotic-impregnated versus standard shunts. Childs Nerv Syst 2009 Jan;25(1):77-83.

 

 

By: Saul R. Hymes, MD

On September 16, 2013, the CDC issued a report on the extent of harm caused by antibiotic-resistant infections. While those of us in the infectious disease field have been aware of this growing problem, its extent was striking: 2,000,000 people sick every year with an antibiotic-resistant infection and 23,000 dead yearly from the same. The problem of antibiotic resistance, they said, "is one of our most serious health threats." Aside from the existing (and growing) number of infections and deaths, the CDC predicted "the loss of effective antibiotics will undermine our ability to fight infectious diseases and manage the infectious complications common in vulnerable patients." Complex infections would no longer be treatable due to complete antibiotic resistance, and thus procedures with known infectious complications like organ transplantation or cancer chemotherapy could become riskier or possibly abandoned altogether. Journalists envisioned this post-antibiotic era; the PBS series Frontline spent an hour of primetime TV on the subject; and in these reports and others, we doctors were labeled as part of the problem.

On March 4 of this year, the CDC released a report on the problem of antibiotic overuse in hospitalized patients. The report looks primarily at adult data, and found that 55.7% of patients discharged from 323 hospitals in 2010 received antibiotics while hospitalized; in more than a third of those patients, the antibiotic use was inappropriate and could have been improved upon. On the pediatrics side, we see similar findings: a recent study published in Infection Control and Hospital Epidemiology by Gerber et al (Gerber and 4 of his 6 coauthors are PIDS members) found that a majority of pediatric patients are similarly prescribed antibiotics while hospitalized. They found that just 4 conditions, representing only 1% of the diagnoses, contained 10% of the antibiotic use—and that use was highly inconsistent and often inappropriate. Our poor antibiotic prescribing practices in the past have now caught up to us—with a vengeance.

However, clichéd as it may be, we are not only part of the problem, but have been and can continue to be part of the solution. First and foremost, through the creation of inpatient antimicrobial stewardship programs (ASP’s), both adult and pediatric hospitals can gain control of their antibiotic use, standardize and minimize prescribing, and improve care as well as cut costs. PIDS and PIDS members have a number of ongoing efforts aimed at promoting ASP growth and research.

Every year for the past 4 years, PIDS has sponsored a conference on antimicrobial stewardship. Cosponsored by Children’s Mercy Hospital & Clinics, and led by Jason Newland, MD, MEd, the Director of Antimicrobial Stewardship there, the 5th annual conference will be occurring June 5–6, 2014, and offers the opportunity for PIDS members and nonmembers to learn more about starting an ASP, share their research and outcomes data, and learn from the work and research of others. Dr. Newland has also been instrumental in another broader effort around ASP research—the formation of the SHARPS group. A group made up of 7 children’s hospitals and their ASP’s, SHARPS was organized with the aim of conducting multi-center research on the benefits of pediatric ASP’s and where and how to implement strategies for improvement. To say the eventual results of their research are eagerly-awaited would be an understatement.

But most antibiotic prescribing goes on in the outpatient setting, far from the watchful eye of a traditional hospital-based ASP. Critical research by Theo Zaoutis, MD, MSCE, and others, has illustrated how we can perform outpatient stewardship to better ensure adherence to prescribing guidelines and use of narrower-spectrum antibiotics in the outpatient setting. This is an area many children’s hospitals, pediatric residencies, and infectious disease specialists have only begun to venture into and is one where we can make significant progress. Educational interventions through Grand Rounds and targeted lectures at practice sites, increased use of outpatient pediatric infectious disease care and phone consults to generalists, and, where feasible, active surveillance via prospective audit and feedback all have the potential to help improve antibiotic practices in this setting and are all areas where we as pediatric infectious disease practitioners can get involved.

The problem of antibiotic resistant infections is a daunting one, but it is one that PIDS members, pediatric infectious disease practitioners, and indeed all pediatricians and physicians can help combat. Think before you write a vancomycin order for one of your hospitalized patients. Do you really need to use that cephalosporin for ambulatory treatment of pneumonia, otitis or a UTI? On an individual level, every little bit helps, and on a larger scale, every institution and multi-institution group that can work on antimicrobial stewardship can make a real difference. Will we reach a post-antibiotic era? Some practitioners, for some patients and some infections, are already effectively working within it, though I certainly hope to never see its full arrival. Through improving our antimicrobial stewardship—in all settings—we have the best chance of delaying it as long as possible.

Infections caused by a concerning type of antibiotic-resistant bacteria are on the rise in U.S. children, according to a new study published in the Journal of the Pediatric Infectious Diseases Society and available online. Although still uncommon, the bacteria are increasingly found in children of all ages, especially those 1-5 years old, raising concerns about dwindling treatment options.

Researchers led by Latania K. Logan, MD, of Rush University Medical Center in Chicago, analyzed resistance patterns in approximately 370,000 clinical isolates from pediatric patients, collected nationwide between 1999 and 2011. Specifically, they determined the prevalence of a resistant type of Gram-negative bacteria, Enterobacteriaceae, that produces a key enzyme, extended-spectrum beta-lactamase (ESBL). The enzyme thwarts many strong antibiotics. Another indicator of ESBL prevalence, susceptibility to third-generation cephalosporins—an important class of antibiotics used to treat many infections—was also measured.

The prevalence of ESBL-producing bacteria increased from 0.28 percent to 0.92 percent from 1999 to 2011; resistance to third-generation cephalosporins increased from 1.4 percent to 3.0 percent. ESBLs were found in children across the country of all ages, but slightly more than half of the isolates with this resistance were from those 1-5 years old. Nearly three-quarters (74.4 percent) of these bacteria were resistant to multiple classes of antibiotics.

"These antibiotic-resistant bacteria have traditionally been found in health care settings but are increasingly being found in the community, in people who have not had a significant history of health care exposure," Dr. Logan said. "In our study, though previous medical histories of the subjects were unknown, 51.3 percent of the children presented in the outpatient or ambulatory setting."

While the overall rate of these infections in children is still low, ESBL-producing bacteria can spread rapidly and have been linked to longer hospital stays, higher health care costs, and increased mortality, the study authors noted. In a 2013 report, the Centers for Disease Control and Prevention called ESBLs a "serious concern" and a significant threat to public health.

Physicians should obtain cultures for suspected bacterial infections to help determine which antibiotics are best, Dr. Logan said. "Some infections in children that have typically been treated with oral antibiotics in the past may now require hospitalization, treatment with intravenous drugs, or both, as there may not be an oral option available."

More research is needed to define risk factors for these infections in children, their prevalence in different settings, and their molecular epidemiology, Dr. Logan said. A companion study by several of the same researchers, also now available online in the Journal of the Pediatric Infectious Diseases Society, suggests that children with neurologic conditions are at higher risk for infections caused by ESBL-producing bacteria.

Additional drug development, keeping younger patients in mind, is also needed. "The overwhelming majority of current research for new pharmaceuticals against antibiotic-resistant organisms are in adults," Dr. Logan said. "New drug options will need to be available for young children."

###

Published quarterly, the Journal of the Pediatric Infectious Diseases Society represents the spectrum of peer-reviewed, scientific and clinical information on perinatal, childhood, and adolescent infectious diseases. The journal is a publication of the Pediatric Infectious Diseases Society (PIDS), the world's largest professional organization of experts in the care and prevention of infectious diseases in children.

PIDS membership encompasses leaders across the global scientific and public health spectrum, including clinical care, advocacy, academics, government, and the pharmaceutical industry. From fellowship training to continuing medical education, research, regulatory issues and guideline development, PIDS members are the core professionals advocating for the improved health of children with infectious diseases both nationally and around the world, participating in critical public health and medical professional advisory committees that determine the treatment and prevention of infectious diseases, immunization practices in children, and the education of pediatricians.

The CDC has addressed a letter to health care providers emphasizing that a vaccine recommendation made by a provider is key in a patient's decision to get vaccinated.

Please click here to view the letter from the CDC.

St. Paul, Minnesota – The Immunization Action Coalition (IAC) is urging hospitals and birthing centers to Give birth to the end of Hep B with the launch of its new comprehensive guidebook “Hepatitis B: What Hospitals Need to Do to Protect Newborns.” Endorsed by the American Academy of Family Physicians, the American Academy of Pediatrics, the American College of Obstetricians and Gynecologists, and the Centers for Disease Control and Prevention, this resource breaks new ground as a policy and best practice guide for newborn hepatitis B immunization.

The CDC has just released the MMWR update early release, please click here to view the complete document.

ARLINGTON, VA, August 9, 2012 – The Journal of the Pediatric Infectious Diseases Society (JPIDS) today released the largest and most rigorous evaluation to date of the impact on reducing the days of antibiotic therapy in a children's hospital using a prospective-audit-with-feedback antibiotic stewardship program (ASP). The study utilized a control group of the 25-member children's hospitals of the Child Health Corporation of America. A companion article describes how the ASP was created within this 317-bed tertiary care children's hospital and clinicians' attitudes toward it—the first published account of such a pediatric program.

Click here to view CDC key points regarding influenza H3N2v virus infections.

US regulators approved a new children's vaccine from GlaxoSmithKline PLC that targets two common causes of Bacterial meningitis, which can be fatal. Read more

ARLINGTON, VA, May 31, 2012 — The Pediatric Infectious Diseases Society (PIDS) today released the June issue of its Journal of the Pediatric Infectious Diseases Society (JPIDS), published by Oxford University Press. PIDS members are the scientific and medical authorities on the care and prevention of infectious diseases in children.

ReRead More...

Register today for the Antimicrobial Stewardship in Practice Educational Series! PIDS has partnered with SHEA to bring you the pediatric antimicrobial stewardship module derived from the June 3rd conference at Children's Mercy Hospital in Kansas CIty.

On October 25, 2011, the journal The Lancet Infectious Diseases published an article entitled "Efficacy and Effectiveness of Influenza Vaccines: A Systematic Review and Meta-Analysis." 

The Pediatric Infectious Diseases Society is pleased to announce the launch of its new quarterly journal, Journal of the Pediatric Infectious Diseases Society (JPIDS), dedicated to perinatal, childhood and adolescent infectious diseases.  For more information, please click here.

The Pediatric Infectious Diseases Society has adopted a position statement regarding personal belief exemptions from immunization mandates.