Pillars - PIDSThe PIDS 2017 Spring Business Meeting was held on Monday, May 8, in conjunction with the PAS Meeting, in San Francisco, California.  Dr. Janet Gilsdorf, PIDS President, gave her farewell report on the state of the Society.  She reminded members of PIDS’ vision and mission statements along with the 2015-2017 strategic pillars that derived from the 2015 strategic planning meeting.

Dr. Gilsdorf then provided a brief summary of activities for a few of the pillars.  She also thanked the PIDS Board of Directors, committee chairs, and liaisons for working so diligently to accomplish the Society’s mission. 

Next, Dr. Gilsdorf provided membership statistics for the last seven years noting the increase in the number of resident and medical student memberships in 2016-2017.  She then reminded members to pay their 2017 member dues if they had not already done so and introduced Dr. Charles Woods, Secretary-Treasurer, to update members on the financial status of PIDS.

PIDS End of Year Net Worth chartDr. Woods provided a list of all sources of revenue and the major expenses of the Society.  He then provided a comprehensive report of the operational and foundation accounts, concluding that PIDS’ 2016 “End of the Year Net Worth” is $2,934,927.

Dr. Gilsdorf then announced the 5th year anniversary of the Journal of the Pediatric Infectious Diseases Society (JPIDS), provided a brief snapshot of the journal’s accomplishments over the last 5 years, and thanked Dr. Theo Zaoutis, JPIDS Editor-in-Chief, for his leadership and the associate editors for their diligence in making the journal successful.

JPIDS Celebrates 5 yearsDr. Zaoutis expressed sincere gratitude to the Society for allowing him to serve as editor and noted that continued success relies heavily on manuscript submissions from PIDS members.  He then encouraged members to submit their original science to JPIDS.

Dr. Gilsdorf then announced the 2017 PIDS election results. 

  • Officers:  Dr. Kris Bryant, President-Elect and Dr. Buddy Creech, Secretary-Treasurer
  • Board of Directors Members-at-Large:  Dr. Jason Newland and Dr. Debra Palazzi
  • Nominations and Awards Committee:  Dr. Angela Campbell, Dr. Lara Danziger-Isakov, and Dr. John Williams

Congratulations to all!

2017-2019 AimsDr. Gilsdorf also thanked Drs. David Kimberlin and Buddy Creech for their service on the PIDS Board and thanked the Society for allowing her to serve as President for the past two years.  With that said, she announced Dr. Paul Spearman as the incoming PIDS President.  Dr. Spearman provided the PIDS Aims discussed at this year’s strategic planning meeting.  These Aims will govern the Society’s activities for the next two years.

A summary of the strategic planning meeting will be provided in the June issue of PIDSNews.  The business meeting concluded at 5:50 pm PDT. Click here to view the full business meeting slide presentation.

Vision Statement: Freedom from infections for all children through excellent clinical care, research, education and advocacy.

Mission Statement: To enhance the health of infants, children, and adolescents by promoting excellence in diagnosis, management and prevention of infectious diseases through clinical care, education, research and advocacy.

It has been my great honor to serve as PIDS President for the past two years and have been amazed at the generosity of our members in giving their time and expertise to PIDS’ many activities.

PIDS’ SEVEN FOCUS AREAS, OR PILLARS, BASED ON THE SPRING 2015 STRATEGIC PLANNING SESSION

PIDS leadership and staff have made great strides in developing and implementing projects directed at the seven focus areas that came out of the 2015 PIDS strategic planning session.  While some projects are still ongoing, PIDS has accomplished the following:

Pillar 1: Value of PID to the Healthcare System

  • Established Value of Pediatric Infectious Diseases Workgroup
    • The workgroup drafted a manuscript based on the results of the Value qualitative study.  The manuscript is currently under review.
    • The quantitative study to evaluate the impact of PID consultation on patient outcomes is currently in the data analysis phase.
    • The committee plans to author a white paper, based on these study results, to emphasize the value of PID.
    • The Value workgroup is also working to develop deliverables for disseminating to PIDS members.
  • Developed an opinion piece on what’s next for AS in pediatrics as well as a toolkit for small pediatric and community hospitals through input from the Pediatric Committee on Antibiotic Stewardship (PCAS).  Both projects are expected to be completed by the end of the year.
  • Established collaborative initiatives with AAP, IDSA, SHEA, and other organizations on AR and ASP.  Some initiatives include:
    • Developed  a white paper on ID Physician Leadership on ASP (in progress)
    • Collaborated with IDSA’s Multistakeholder Measure Development Workgroup to establish stewardship measures to report to CMS
    • Collaborated with Stakeholder Forum on Antimicrobial Resistance (S-FAR) Group (ongoing)
    • Established the AAP/PIDS Antimicrobial Resistance and Stewardship Workgroup to assess current practices that impact antimicrobial stewardship within pediatrics and develop educational programming for NCE (in progress)
    • Established the IDSA/SHEA/PIDS Stewardship Leadership Group to identify new collaborative initiatives as well as minimize overlap in activities with some of the same external organizations on various issues/at different times (ongoing)

Pillar 2: Recruitment of Future ID Pediatricians

  • Developed recruitment tools for utilization by pediatric infectious disease programs.  Efforts include:
    • Fellow Video Contest on “A Day in the Life of an ID Fellow”
    • Several videos of PIDS members telling their stories
      • What is a “Day in the Life of a Peds ID Doc?
      • How did you decide on this career path?
      • What parts of your career give you the great satisfaction?
      • How do you balance your professional and personal life?
      • How did Peds ID assist in advancing you to your current position?
      • What would you say to someone to encourage them to become a Pediatric ID specialist?
    • Message from the President – Membership Video
    • Updated career brochure
  • Worked with IDSA to enhance interest in ID as a specialty
  • Submitted NIH R13 Conference Grant for residents & students to attend St. Jude/PIDS conferences (funded) 

Pillar 3: Training & Guidance for PID Fellows

  • Developed Fellows’ Survival Guide, with templates for inquiring about job opportunities
  • Improved Fellows’ Day at IDWeek
  • Established very popular Fellows Networking Happy Hour at IDWeek 
  • Appointed fellows to committees/assigned projects
  • Developed  online educational modules (in progress)
  • Established Career Development sessions at St. Jude/PIDS conferences
  • ASP Basics Workshop at the ASP Conference

Pillar 4: Research activities related to PID

  • Increased fellowship/research award opportunities
  • Developed research opportunities for PIDS Transplant Network (in progress)
  • Implemented a clinical observership exchange program with ANZPID

Pillar 5: Engagement of new and established PIDS members

  • Increased visibility at meetings
  • Identified new member prospects (ongoing)
  • Created a digital archive and release it via Twitter, Facebook and the PIDS website 
  • Increased member involvement in committee activities
  • Increased international members

Pillar 6: Growth of the Pediatric Infectious Diseases Society Education and Research Foundation

  • Established the Resource Development Committee to assist staff in identifying potential funding opportunities (ongoing)
  • Expanded opportunities for philanthropic giving to the Foundation
  • Created the foundation website 
    • Who we are? 
    • Fellowship Infographics report to summarize the successful outcome of the Fellowship Awards Program and past fellowship award recipients 
    • Education and Research Programs
    • How to contribute with donation link

Pillar 7: Success of the Journal of Pediatric Infectious Diseases Society

  • Celebrated JPIDS’ fifth birthday 
  • Increased revenue
  • Increased visibility at meetings
  • Maintained manuscript submissions
  • Identified potential collaborations with international societies (ongoing)
  • Enhanced options for on-line only publication

It’s been a very productive two years.  We all look forward to the extremely capable leadership of our next President, Dr. Paul Spearman, in moving our Society into an even brighter tomorrow.

 

Attending conferences and symposia as pediatric infectious diseases fellows is usually an exciting and intellectually stimulating experience. Seeing advances in research presented, learning about varying topics from around the world, and meeting leaders in the field make any large gathering of infectious diseases physicians a great learning opportunity.

As a 3rd year fellow, after having the privilege of attending more than 10 conferences as a trainee at this point, I looked forward to the PIDS Transplant Symposium and Research Conference this year just a little more than all of the others. It has the added benefit above all others I’ve attended of being smaller, more manageable in size and schedule, and being specifically focused on the needs of fellows and early career infectious diseases physicians.

After learning from the presenters at the conference, I was then able to come back and share with my section at Tulane in New Orleans the numerous topics I had learned in my time in Memphis. I was able to discuss with them Dr. Ann Leen’s research on infusions of activated T-cells for preventing transplant-associated viral infections, present Dr. David O’Connor’s findings on Zika virus infection in a Rhesus Macaque model, and review Dr. Miriam Laufer’s research on malaria. Over the course of 1 of hour-long weekly section conferences, we also briefly discussed neonatal tolerance in solid organ transplantation, how the microbiome can affect bone marrow transplant patients, and the lack of effect of treatment of schistosomiasis in pregnant women.

The PIDS Transplant Symposium and Research Conference in Memphis has been a wonderful learning opportunity for me as a trainee, and my entire section has been very interested in learning from the topics presented each year, even if they are not in attendance. This wonderful learning opportunity from PIDS and St. Jude has benefited our entire group of Pediatric Infectious Diseases specialists at Tulane in New Orleans, and I know I will continue to look forward to attending and learning in the future!

Dr. Paul Spearman, President-elect of PIDS, gave a presentation to the Presidential Advisory Council on Combating Antibiotic-Resistant Bacteria (PACCARB) at HHS headquarters in Washington DC on January 25th. PACCARB is advisory to the administration, and is charged with gathering input and providing policy recommendations to fight antimicrobial resistance, and is chaired by Dr. Martin Blaser of NYU. Other organizations presenting in this public session included SHEA, APIC, IDSA, and ACGME. The focus of the session PIDS was asked to participate in was on workforce and education issues in Infection Prevention. As suggested by several of our PIDS leaders who work in this area, Dr. Spearman provided a pediatric-focused viewpoint of the unique aspects of infection prevention in the pediatric hospital and the pediatric ambulatory setting. He emphasized the need for infection prevention research that includes infants and children, and urged greater participation of pediatric ID specialists in formulating guidelines in this area. The need to maintain a strong pipeline of pediatric ID specialists who are trained in infection prevention and are poised to become leaders both locally and nationally was also emphasized. Council members were very engaged in this discussion, and are likely to include these pediatric ID-specific topics in their report to the President.

To view an archived webcast and minutes from the PACCARB meeting, please visit https://www.hhs.gov/ash/advisory-committees/paccarb/meetings/upcoming-meetings/january-25-2017-public-meeting/index.html

Infections caused by a type of bacteria resistant to multiple antibiotics are occurring more frequently in U.S. children and are associated with longer hospital stays and a trend towards greater risk of death, according to a new study published in the Journal of the Pediatric Infectious Diseases Society. Previously acquired mostly while children were already in the hospital, the new findings also suggest the infections--caused by bacteria from the Enterobacteriaceae family that are resistant to multiple drugs--may be spreading more often in the community.

"Antibiotic resistance increasingly threatens our ability to treat our children's infections," said study author Sharon B. Meropol, MD, PhD, of University Hospitals Rainbow Babies and Children's Hospital in Cleveland and Case Western Reserve University School of Medicine. "Efforts to control this trend are urgently needed from all of us, such as using antibiotics only when necessary, and eliminating agricultural use of antibiotics in healthy animals."

In the retrospective study, researchers analyzed data from 48 children's hospitals throughout the U.S., focusing on approximately 94,000 patients under the age of 18 who were diagnosed with Enterobacteriaceae-associated infections between 2007 and 2015. The proportion of these infections caused by bacteria that were resistant to multiple antibiotics increased from 0.2 percent in 2007 to 1.5 percent in 2015, a more than 700 percent increase in prevalence over the eight-year period.

Bacterial infections resistant to multiple drugs are especially concerning in children, for whom there are a limited number of stronger antibiotics currently approved for use compared to adults, putting kids at higher risk for worse outcomes. In the study, children with Enterobacteriaceae infections resistant to multiple antibiotics had hospitals stays that were 20 percent longer than patients with infections that were susceptible to antibiotics, the researchers found. The results also suggest a greater mortality risk among pediatric patients infected with the resistant strains, although the increased odds for death were not statistically significant.

Most of the resistant infections were present when the children were admitted to the hospital, suggesting the bacteria may be increasingly spreading in the community. Older kids, children with other health conditions, and those living in the Western U.S. were more likely to have the infections, the study found. The results build on previous research reporting rising rates of these infections in adults and outbreaks in hospitalized children, especially in less-developed countries in Latin America and Asia, where antibiotics are available over the counter.

Future research should focus on better ways to limit the transmission of resistant Enterobacteriaceae bacteria, including between hospitals and long-term care facilities and their communities, in addition to the development of new antibiotics that are safe and effective to use in children, Dr. Meropol said. "While the march of antibiotic resistance seems inexorable, informed and rigorous efforts to reverse this trend have been successful for other types of organisms, and are urgently needed within this context."

Fast Facts

  • Infections caused by a type of bacteria resistant to multiple antibiotics are increasing in U.S. children and are associated with longer hospital stays and a trend towards greater risk of death.
  • Caused by members of the Enterobacteriaceae family of bacteria that are resistant to multiple antibiotics, these infections may be increasingly spreading in the community, not just in hospitals.
  • Efforts to control rising antibiotic resistance, including the appropriate use of antibiotics in humans and animals, and the development of new antibiotics, are urgently needed.

###

Editor's Note: The study was funded by the National Institute of Allergy and Infectious Diseases at the National Institutes of Health. 

In August, 2008, UpToDate®, in conjunction with Texas Children’s Hospital, established a series of pediatric subscription awards in honor of Dr Ralph David Feigin, who had been Editor-In-Chief of the Pediatrics Section of UpToDate since its inception in 1999.  The award program grants up to six, three-year subscriptions to UpToDate®  to physicians, other health care providers, or health care facilities that provide care to underserved or low-income children and who could not otherwise afford the subscription.  The deadline for applications is May 30; awardees will be announced in June; and the subscriptions will start in July, 2017. 

Criteria

Applicants must meet all four (A, B, C, and D) of the following qualifications.

  • Practice or teach in low-income or medically underserved areas.
    A low-income or medically underserved area is defined as meeting any one of the following:
    1. a rural area more than 50 miles from the nearest city with a population of 400,000 or more and more than 50 miles from a medical school
    2. a practice in which 50% or more of the patients are uninsured, are insured by a governmental program or are identified as minorities
    3. a community or area designated by a governmental agency or governmental representative as medically underserved or qualifies as a health professional shortage area
    4. a low income country as designated by the WHO
  • Deliver health care to children or health education to children and their families
  • Do not currently have access to UpToDate® and are unable to afford the initial one-year subscription of approximately $500 and the approximately $400 yearly renewal fee.
  • Have access to a computer with internet capability.

Application Process

Applicants should complete the application below electronically.  Cells may be expanded as needed. 

Completed applications (as a word document) should be returned to Martin I Lorin, MD (This email address is being protected from spambots. You need JavaScript enabled to view it.) by May 30, 2017. Click here to download an application.

 

The first Antimicrobial Stewardship Research Workshop (ASRW) was held November 29-30, 2016, and was co-organized by Society of Healthcare Epidemiology of America, Infectious Diseases Society of America, Society of Infectious Diseases Pharmacists, Pediatric Infectious Diseases Society, and Centers for Diseases Control and Prevention and was supported by a grant from Merck. The audience was multidisciplinary with multiple backgrounds: teaching hospital, community, adult, pediatric, and industry. Additionally, the workshop had live following on Twitter, with the hashtag, #ASRW16.

The two-day workshop was filled with several topics, but gave a broad overview of the need for and challenges of studying antimicrobial stewardship. For the first half of the day, speakers set the stage of the antimicrobial stewardship research agenda: Drs. Lauri Hicks and Preeti Malani presented outpatient and inpatient stewardship research, respectively. For review of basic concepts of research, Dr. Ebbing Lautenbach provided an epidemiology toolbox presentation. Defining the right kind of question for research can be difficult and Dr. Vanessa Stevens walked the audience through various examples of good and bad research questions and the following presentation on the various areas of research in antimicrobial stewardship by Dr. Rebekah Moehring complemented it well. After this introductory morning, groups were encouraged to breakout and discuss different approached to a research question and included various themes, such as hospital vs. outpatient and internal vs. external funding of research.

For the second half of the day, the discussion focused further into the different aspects of research: Drs. Pranita Tamma and Jeffrey Linder presented on defining exposures, outcomes, and confounders of interest based on inpatient and outpatient settings, respectively. Dr. Marc Scheetz explained the nuances between research for generalized knowledge vs. quality improvement and assurances projects. The audience was introduced to how social sciences can be involved in antimicrobial stewardship, with Dr. Heather Reisinger giving an overview of implementation science and how the models may be able to be used in stewardship research. Dr. Stevens returned to discuss the pros and cons of health economics to evaluate stewardship programs and Dr. Julia Szymczak ended the evening with a vigorous reminder that there are many behavioral factors associated with antimicrobial prescribing and identification of these factors may help with implementation of stewardship interventions.

After a heavy first day, everyone returned bright-eyed for the second day, which was more concentrated on various strategies for evaluating antimicrobials stewardship interventions. Dr. Jessina McGregor explained the ins-and-outs of interrupted time series analysis and how they can be very helpful in evaluating programs; following that, Dr. Theoklis Zaoutis educated the audience of how the cohort design can be used for studying the impact of an intervention. Other assessment strategies were reviewed: Dr. Jonathon Edwards explained how the National Healthcare Safety Network (NSHN) will use the Antimicrobial Use and Resistance (AUR) report to benchmark antimicrobial usage through the standard antimicrobial administration ratio (SAAR), which was followed by Dr. Scott Fridkin’s presentation on what kind of metrics and comparisons should be used and how to include variation into assessment of programs.  Dr. Deverick Anderson highlighted the pitfalls of just relying on antimicrobial consumption as a metric and discussed how desirability of outcome ranking (DOOR) and response adjusted for duration of antibiotic risk (RADAR) may be able to shine more light on specific outcomes of interest.

After lunch, the final topic was to put all the different concepts together for a successful research program. Dr. Anderson returned to the stage to discuss the details needed for data management and common issues that arise when developing the components. Dr. Elizabeth Dodds-Ashley, Jeffrey Gerber, and Fridkin led an open discussion of different funding mechanisms for research in antimicrobial stewardship (NIH, AHRQ, professional societies, foundations, industry, etc.). Lastly, Dr. Malani wrapped up the workshop with a presentation on the importance of disseminating research and various mechanisms to maximize the audience reach.

Overall, the workshop seemed highly successful; the topics were broad which provided a great base for new researchers and reinforced concepts for more advanced researchers. Additionally, it provided concrete examples of multiple concepts that are used in antimicrobial stewardship research, as well as pitfalls in the current mechanisms of evaluation (e.g. duration of therapy) and areas in need of further development. The ASRW will continue to build, with projected meetings for 2017 (in Chicago) and 2018 (in Baltimore).

The Pediatric Infectious Diseases Society (PIDS) supports universal vaccination of children according to evidence-based policies as outlined by leading public health agencies and professional societies, including the Centers for Disease Control and Prevention (CDC), the Advisory Committee on Immunization Practices (ACIP), the American Academy of Pediatrics (AAP), the Infectious Diseases Society of America (IDSA), and many other reputable organizations.

PIDS stands behind the overwhelming scientific evidence showing that vaccines do not cause autism. It is dangerous to perpetuate this myth and doing so is likely to result in harm to our children from vaccine-preventable diseases. Statements by those claiming a connection between vaccines and autism with no scientific basis should be recognized as fraudulent and misleading. The false link between autism and vaccines was first popularized by Dr. Andrew Wakefield, a British physician who falsified data and later profited from his false theory. Dr. Wakefield’s work was proven to be fraudulent, his medical license was revoked, and he has been discredited by leading medical societies and medical journals.

Vaccines provide tremendous health benefits to individuals and to society. PIDS calls on our government leaders to recognize the overwhelming evidence showing the outstanding safety of childhood vaccines and to avoid the temptation to equate anecdotes with scientific evidence. We further call on our government leaders to avoid providing a hint of legitimacy to myths such as this one for which there is no scientific evidence. To do so will unnecessarily endanger the lives of American children.

###

The Pediatric Infectious Diseases Society (PIDS) is the world’s largest professional organization of experts in the care and prevention of infectious diseases in children. PIDS membership includes leaders in clinical care, public health, academia, government, and industry who advocate for the improved health of children nationally and globally. The Society fulfills its mission through research, advocacy, guideline development, fellowship training, continuing medical education, its support of immunization practices in children, and The Journal of the Pediatric Infectious Diseases Society, its quarterly peer-reviewed publication. To learn more about PIDS, visit www.pids.org and follow PIDS on Facebook and Twitter.

 

If it has seemed like you’ve been seeing more cases of antibiotic-resistant Pseudomonas aeruginosa over the past few years, the study by Logan and colleagues suggests you may be right.  This retrospective study used data from the Surveillance Network Database to describe the epidemiology of Pseudomonas aeruginosa isolates from children and trends in antibiotic resistance from 1999-2012. This national network of clinical microbiology laboratories included data from 300 US hospitals diverse in location, size, and patient population. The analysis included isolates from children 1-17 years of age without a known diagnosis of cystic fibrosis. Per the definition by the Centers for Disease Control and Prevention, multidrug-resistance (MDR) was defined as nonsusceptibility to agents in 3 of the following 5 antimicrobial classes: cephalosporins, β-lactam/β-lactamase-inhibitor combination, carbapenems, fluoroquinolones, and aminoglycosides. Carbapenem-resistance (CR) was nonsusceptibility to at least 1 of the 3 agents in the cabapenem class (imipenem, meropenem, or doripenem).

The authors report a number of interesting findings. First, among 77,349 P. aeruginosa isolates included in the analysis approximately 20% were MDR, 11% were CR, and 8.4% were both MDR and CR. The highest proportions of MDR and CR P. aeruginosa isolates were from inpatient settings (especially those in an ICU), respiratory sources, and children 13-17 years old. Second, the overall trends indicate significant increases in both MDR and CR among P. aeruginosa isolates in the US. During the 13.5 year study period, the proportion of MDR isolates increased from 15.4% to 26% and the proportion of CR isolates more than doubled from 9.4% to 20%. This trend was observed in nearly all age categories and patient locations, the only exception being children 13-17 years old in an inpatient setting. As shown in figure 1, there were steady increases seen from 2010-2012 in both MDR and CR isolates. 

Finally, when examining resistance to individual antibiotics, rather than classes of antibiotics, some location-specific differences were seen. In the inpatient setting during the latter years of the study (2008-2012) the highest rates of resistance were seen to doripenem (27.6%), gentamicin (26.1%), cefepime (19.7%), ceftazidime (18.0%), and levofloxacin (16.9%). However, during the same time period in the outpatient setting the highest resistance rates were seen to gentamicin (28.4%), amikacin (21.8%), tobramycin (17.3%), ciprofloxacin (13.6%), and levofloxacin (13.1%). Additionally, significantly increasing resistance during the entire study period was seen to gentamicin and piperacillin-tazobactam in both inpatient and outpatient settings.

As noted in the manuscript, the reason for increasing rates of antibiotic resistance among P. aeruginosa isolates is likely multifactorial, with antibiotic usage, device usage, and increasing numbers of medically complex children all potentially playing a role. Given the limitations of the database, the authors were unable to differentiate colonization from infection and with respiratory isolates being the most common, some of these may represent colonization in patients with tracheostomy and/or ventilator dependence. Unfortunately, the Surveillance Network disbanded after 2012 so this study does not include data beyond 2012, which may be helpful in determining the impact of more widespread pediatric antimicrobial stewardship efforts. Despite the limitations, these findings highlight the importance of continued efforts in antimicrobial stewardship, as well as vigilance in infection prevention and control efforts to hopefully slow the spread of drug-resistant organisms.

Logan LK, Gandra S, Mandal S, Klein EY, Levinson J, Weinstein RA, Laxminarayan R. Multidrug-and Carbapenem-Resistant Pseudomonas aeruginosa in Children, United States, 1999–2012. Journal of the Pediatric Infectious Diseases Society. 2016 Nov 16

In the November 22/29, 2016 issue of JAMA, PIDS president Janet Gilsdorf, MD, FPIDS wrote a thoughtful and poignant reflection on how, and whether, we can achieve appropriate balance as practicing physicians (pediatric infectious disease physicians, in her and my case) between our work lives and our home lives. As a father of two children, ages 4.5 and 8 years, and as the spouse of another academic pediatric subspecialist (my wife is a PICU attending at my institution), I found myself nodding in agreement as I read Dr. Gilsdorf’s words—smiling in knowing sympathy in some places, and crying at others. She captures the true travails of attempting to balance a busy and diverse academic medical workload with some semblance of family time.

My own children have long asked why it is that daddy is always home at night while mommy has to be on call (an advantage of the peds ID lifestyle), or why daddy is always paged during dinner, and in the car, and at bedtime (the perils of the ID lifestyle), while mommy has more free attention at home. The choices we make, from which subspecialty to which subfields and career paths within that, as Dr. Gilsdorf rightly points out, do not and cannot occur in a vacuum. Our children and spouses see what we do, how we act, the choices we make (whether we feel they are, or not, they are choices), and respond to them. Thankfully, my own kids seem fairly well-adjusted about it and Dr. Gilsdorf can also say hers did relatively well, with some caveats. All told, there are success stories.

But as Dr. Gilsdorf points out, these successes are not by chance and are not without choice and sacrifice. It is, as they say, not possible to have your cake and eat it too. You cannot be the perfect parent and the perfect academician. You can, as she paraphrases Winnicott, be a ‘good-enough parent’. And I’ll add here, you can actually choose to be a good-enough physician as well. The work-life balance question is so stressful for us because we all want to succeed, to be the best we can be, to achieve. For some that is possible and easy, for some that is possible but harder, and for some, that may not be possible, or even the balance they hope to achieve at all. A chaotic household with multiple caretakers but a triumphantly successful academic career could easily become a more ordered, calmer household with more consistent caretakers and a solidly ‘fine’ career. Neither is superior when examined in isolation, despite our professional biases. Every one of us, as a parent and as a physician, must find our own path. As Dr. Gilsdorf herself writes, “We had our own equation for success as physician-parents, or, rather, we had an equation that we invented…” We must try our best to balance our own equation according to what makes us and our family happy, and then hope that it might just be good enough.

Greetings from the PIDS leadership! We were delighted to see the large and engaged turnout at the recent PIDS Business Meeting during IDWeek in New Orleans. Our society is growing in both numbers and impact, and our new organization chart reflects the wide variety of our activities. We encourage our members to participate in our many committees and task forces (note: apply for committee membership upon the solicitation that occurs every summer and apply for all that interest you.)

At IDWeek a number of important issues were discussed, including:

Recognition of the excellent research by our members

  1. 2016 Distinguished Research Award –Samuel Katz, MD
  2. The Caroline B. Hall Lectureship in Pediatric Clinical Research – Octavio Ramilo, MD
  3. The Caroline B. Hall Clinically Innovative Research Award –Jeffrey Gerber, MD, PhD
  4. PIDS Poster Awards
    1. David Griffith, MD
    2. Sarah Labuda, MD
    3. Liset Olarte, MD
    4. Nicole Poole, MD
    5. Emily Souder, MD

Introduction of the new PIDS Education and Research Foundation web-site

The Foundation, a separate legal entity from the Society, manages donations and gifts to the Society and distributes the research and training awards. We welcome your financial support.

Journal of the Pediatric Infectious Diseases Society: reminder from Dr. Theo Zaoutis, Editor-in-Chief

  1. Encourage your institution to subscribe to JPIDS 
  2. Send your manuscripts to JPIDS. Your excellent science makes our journal and our Society strong.

Results of the IDSA fellows’ survey, 2016 (note: small numbers of PID trainees)

  1. Trainees state they like their jobs and love PID, are generally happy with their careers and work-life balance, and would do it all again (and encourage others to join them in PID)
  2. Trainees have concerns that include the perception of limited job availability, less than ideal compensation in our field, and a gender discrepancy in compensation (note: we need to understand this one better)

PID Recruitment: What we know about recruitment to Infectious Diseases (from the IDSA survey of Bonura et al CID 63:155, 2016):

  1. Career decision-making for ID physicians is a two-step process, beginning during the early medical school years (motivated by emotional connectivity) then modified during residency (motivated by pragmatism).
  2. Intellectual stimulation of ID is seen as a positive
  3. M1, M2 microbiology courses focused on concept development over memorization are favored
  4. Interest in ID is strengthened by:
    1. Confidence in microbiology knowledge
    2. Exposure to ID
    3. Attendance at ID conferences
    4. Strong, enthusiastic ID mentors (Note: nobody wants to follow in the footsteps of a complainer).
  5. Detractors from ID include:
    1. Salary
    2. Perceived limited job availability
    3. Lure of primary care (note: this is more relevant to adult ID; for peds, it may be the lure of hospital medicine)

PID Recruitment: What we can do?

  1. Participate in Med School microbiology courses, emphasize pediatric illnesses and patients, and move the course toward concepts and away from memorization
  2. Facilitate medical student attendance at PID meetings
  3. Serve as enthusiastic mentors for med students/residents
  4. Consider establishing medical student ID interest groups with adult ID

We hope to see you at the PAS meeting, May 6-9, 2017, in San Francisco and at IDWeek, October 4-8, 2017, in San Diego.

Janet R. Gilsdorf, MD, FPIDS
President, Pediatric Infectious Diseases Society

Antibiotics are fundamental to modern medicine. They are essential to treat a wide spectrum of infections from routine streptococcal throat infections to life-threatening sepsis and to prevent infections in patients undergoing surgery and chemotherapy. However, the spread of antibiotic-resistant bacteria has placed the world on the precipice of what public health leaders call a "post-antibiotic" era in which even simple surgical procedures could be complicated by deadly infections. In the United States alone, at least two million Americans acquire a serious antibiotic-resistant infection each year, with an estimated 23,000 deaths as a direct result.1

All antibiotic use carries a risk of contributing to the development of antibiotic resistance. Additionally, although antibiotics are generally safe, these drugs also carry risks for individual patients. For example, antibiotics can cause adverse events ranging from minor side effects to serious allergic reactions and antibiotic use increases the potential for a patient to develop an infection caused by Clostridium difficile (C. diff), which can sometimes cause life-threatening diarrhea. A recent estimate found that nearly half a million Americans contracted a C. diff infection in 2011, resulting in 15,000 deaths. 2 Because of these risks to both individual patients and to the public health, antibiotics should only be used when indicated.

In 2015, the White House released a goal to reduce inappropriate antibiotic use in outpatient settings by 50 percent by the year 2020. 3 Outpatient use accounts for the majority of antibiotics prescribed for humans in the United States. While it is known that antibiotics are often used inappropriately, the amount of outpatient antibiotic use that is inappropriate and amenable to reduction needs to be quantified.

Over the past year, the Centers for Disease Control and Prevention (CDC) and The Pew Charitable Trusts undertook efforts to quantify the potential for reducing inappropriate outpatient antibiotic use in the United States. In support of this effort, Pew convened a panel of experts, including experts from the CDC, to set a baseline of antibiotic prescribing in the United States and establish condition-specific targets for reduction of unnecessary outpatient antibiotic prescribing. Based on current prescribing data, these experts determined that at least 30 percent of overall antibiotic use in outpatient settings is unnecessary. 4 In order to meet the White House goal of a 50 percent reduction in inappropriate use, total outpatient antibiotic prescribing in the United States would need to fall 15 percent by 2020. The majority of this reduction would come from reducing unnecessary use of antibiotics for acute respiratory conditions. These conditions account for 44 percent of antibiotic prescriptions in outpatient facilities, and half of these prescriptions are unnecessary.

As representatives of a range of health care providers and public health officials, we recognize that antibiotic resistance is a major threat to public health and commit to collective action to address this challenge by ensuring the appropriate use of these critical therapies. In support of national targets, our organizations commit to work in partnership with our members to expand current antibiotic stewardship efforts, fill research gaps around effective interventions for improving prescribing habits, and help our members use antibiotics appropriately in outpatient settings. These coordinated efforts will help preserve these life-saving therapies for the good of all of our patients.

Click here to view the statement online and download pdf copy.


1 U.S. Centers for Disease Control and Prevention, Antibiotic Resistance Threats in the United States, 2013, accessed Nov. 12, 2014, http://www.cdc.gov/drugresistance/threat-report-2013

2 Fernanda C. Lessa et al., "Burden of Clostridium difficile Infection in the United States," New England Journal of Medicine, 372 2(2015): 825-834, doi: 10.1056/NEJMoal408913.

3 The White House, National Action Plan for Combating Antibiotic-Resistant Bacteria, March 2015, accessed July 27, 2015, https://www.whitehouse.gov/sites/default/files/docs/national_action_plan_for_combating_antibotic-resistant_bacteria.pdf

4 This goal specifically targets a reduction in unnecessary antibiotic prescribing, and does not include goals aimed at improving antibiotic selection. Ensuring the appropriate antibiotic is chosen for a particular condition is another critical aspect of antibiotic stewardship.

Impact of Matrix-Assisted Laser Desorption and Ionization Time-of-Flight and Antimicrobial Stewardship Intervention on Treatment of Bloodstream Infections in Hospitalized Children.

As a result of growing antimicrobial resistance worldwide, the promotion of judicious use of antibiotics1 has become increasingly important. In the health care setting, antibiotic stewardship programs (ASPs) aim to achieve excellent clinical outcomes while at the same time minimize toxicity, reduce costs, and decrease unnecessary exposure to broad spectrum antibiotics, thus limiting selection for antimicrobial resistant strains2,3.

At the same time, exciting advances in detecting antimicrobial resistant pathogens from clinical specimens are in development. The manner by which hospitals and microbiology labs are able to use this technology to drive patient care is highlighted by the study by Malcolmson and colleagues, reported in the JPIDS early web release on June 23rd 4.

Malcolmson et al report their experience in optimizing antimicrobial therapy at their institution after implementation of a new Matrix – Assisted Laser Desorption and Ionization Time of Flight (MALDI-TOF) mass spectrometry system. A MALDI-TOF mass spectrometry identifies microorganisms down to subspecies level. In simple terms, bacteria or yeast are selected from a culture plate or broth cultures and transferred to a target plate that lyses the organisms with solvents. The lysate is then run through the MALDI-TOF, which compares the subsequent spectral profiles of a number of bacterial components to those in a database for organism identification. Compared to traditional methods, which rely on bacterial growth characteristics and phenotypic criteria in biochemical reactions, long incubation times, and intensive personnel time, the MALDI-TOF can be an accurate, rapid, and inexpensive way to identify bacteria, fungi, and mycobacteria. Limitations of MALDI-TOF reflect the accuracy of identification with a small inoculum, the need to run susceptibilities separately, and the difficulty of separating closely related species (such as S.pneumoniae, S. mitis, and S. oralis). Within the last five years, MALDI-TOF has emerged as an important diagnostic tool in clinical microbiological laboratories5–7.

Malcolmson’s paper capitalizes on the introduction of this technology at their institution to retrospectively capture outcomes of a new MALDI-TOF system for early identification of positive blood cultures. This coincided with the hospital’s new ASP. Using a quasi-experimental design, the pre-period was defined as October 2009 - July 2010, when positive cultures from the BACTEC machine were gram stained and sub-cultured for identification and occurred prior to the institution of an ASP. Results were entered into a lab system, with fax and phone call to the ordering unit or physician. This was compared to the post period between October 2013 to July 2014, when both the MALDITOF and ASP program were initiated. In the post period, an aliquot from the positive blood culture was run through their MALDI-TOF with results compared to the gram stain followed by the same notification system. The ASP included prospective audit and feedback by a clinical pharmacist who checked cultures and susceptibilities daily and communicated with the treating team about the management plan.

Charts were reviewed for patients with a positive blood culture for bacteria or yeast. Patients with contaminants and those with blood cultures positive prior to their admission were excluded. The primary outcome of interest was time to optimal therapy, defined as the number of hours from blood culture collection to time of antimicrobial with the narrowest effective spectrum. The study also measured the following secondary outcomes: time to effective therapy (defined in hours as the time from collection of the blood culture to time of first antimicrobial agent with known susceptibility), 30 day all-cause mortality, length of stay, readmission, and time to pathogen identification among others. The authors used descriptive statistics to describe outcomes during the two periods.

Results included 100 episodes of blood stream infections in the pre period and 121 in the post period. Minor differences were noted between the two periods but otherwise baseline demographics were similar. The main outcome of interest, time to optimal (narrowest) therapy, showed a significant reduction in the post period from 77 to 54.2 hours (p<0.001). While not statistically significant, time to effective therapy trended to improvement from 2.6 hours to 1.6 hours p=0.058. Time to organism identification was dramatically reduced from 43.7 hours to 18.8 hours (p<0.001). No other differences in outcomes were noted. In their subgroup analysis, gram negative bacteremia demonstrated statistically significant decreases in both time to effective and optimal therapy (2.0 to 0.7 hours and from 146.8 hours to 48 hours, p<0.001 respectively). Multidrug resistant gram negatives were identified more quickly (41.3 vs. 16.7 hours) and time to optimal therapy (149.5 hours vs. 16.0 hours) was decreased (p=0.002). ASP interventions included discontinuation of antimicrobials, tailoring to culture and susceptibility, and optimization of dose based on information garnered from the MALDI-TOF results. Specifically, ASP made 15 recommendations to broaden and 36 recommendations to narrow therapy. Other outcomes, including mortality, were not significantly different. Readmission numbers were very low across the study and C.difficile rates were not different in the periods.

While a single center study, Malcolmson et al demonstrated that the combined approach of an improved detection system and an effective ASP decreased time to optimal and, sometimes, effective antimicrobial therapy. This was particularly apparent for gram negative infections. It would have been interesting to quantify the added benefit of the ASP with these new technology platforms, but this could not be captured as both interventions were implemented nearly simultaneously. Additionally, the ASP in this institution did not operate round the clock daily, which could reflect additional lost benefits in time to optimal therapy.

With quicker and more accurate systems of microbial identification from various clinical sources, blood, tissue, CSF, etc. on the horizon, we may be better able to reduce unnecessary broad spectrum antibiotics and streamline empiric-to appropriate-antimicrobials more quickly. The MALDI-TOF system continues to be refined and other platforms, including those that are molecular based, such as Verigene, are already being utilized6,8,9. Growing numbers of antimicrobial stewardship programs across the country are demonstrating value by reducing antimicrobial use and improving quality of care.2,3 Enhanced technologies that allow for rapid identification of pathogens could have enormous promise within these programs. The sooner we know the organism and susceptibility, the faster informed interventions can take place.

References

  1. Spellberg B, Blaser M, Guidos RJ, et al. Combating antimicrobial resistance: policy recommendations to save lives. CID. 2011;52 Suppl 5(suppl 5):S397-428.
  2. IDSA. New Antibiotic Stewardship Guidelines Focus on Practical Advice for Implementation. Webpage. 2016.
  3. Barlam TF, Cosgrove SE, Abbo LM, et al. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. CID. 2016;62(10):e51-77.
  4. Malcolmson CNKHSKNSJTPRA. Impact of Matrix-Assisted Laser Desorption and Ionization Time-of-Flight and Antimicrobial Stewardship Intervention on Treatment of Bloodstream Infections in Hospitalized Children. JPIDS. 2016;June 23(epub ahead of print).
  5. Murray PR. What is new in clinical microbiology-microbial identification by MALDI-TOF mass spectrometry: a paper from the 2011 William Beaumont Hospital Symposium on molecular pathology. J Mol Diagn. 2012;14(5):419-23.
  6. Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol. 2015;6:791.
  7. Bailey D, Diamandis EP, Greub G, Poutanen SM, Christensen JJ, Kostrzew M. Use of MALDI-TOF for diagnosis of microbial infections. Clin Chem. 2013;59(10):1435-41.
  8. Beal SG, Ciurca J, Smith G, et al. Evaluation of the nanosphere verigene gram-positive blood culture assay with the VersaTREK blood culture system and assessment of possible impact on selected patients. J Clin Microbiol. 2013;51(12):3988-92
  9. Bork JT, Leekha S, Heil EL, Zhao L, Badamas R, Johnson JK. Rapid testing using the Verigene Gram-negative blood culture nucleic acid test in combination with antimicrobial stewardship intervention against Gram-negative bacteremia. Antimicrob Agents Chemother. 2015;59(3):1588-95.

Grinsdale JA. Interferon-Gamma Release Assays and Pediatric Public Health Tuberculosis Screening: The San Francisco Program Experience 2005 to 2008.

Grinsdale et al. describe the experience of the San Francisco Department of Public Health’s (SFDPH) use of interferon-gamma release assays (IGRA) in a longitudinal retrospective pediatric cohort in a low TB-prevalence setting.

Latent tuberculosis infection (LTBI) was diagnosed in asymptomatic children with negative chest X-ray and positive QuantiFERON-TB Gold In-tube (QFT), regardless of tuberculin skin test (TST) results, if performed. A small subset of children with a prior or current positive TST and a negative QFT were treated for LTBI at the physician’s individual discretion. Indeterminate QFT tests were repeated and the subsequent test used to establish LTBI status, and for repeated indeterminate QFT tests, diagnosis of LTBI was based on the most recent TST result.

Inclusion criteria for the study were children <15 years of age with a QFT test performed March 1, 2005–December 31, 2008, with 1092 eligible children included. Children had varying risk factors for TB infection including contacts of active TB cases, immigrant children form high-prevalence TB countries who were also BCG vaccinated, and children born in the US being screened for school entry. The study population included 56 (5%) children <2 years of age and 292 (27%) < 5 years of age. QFT-negative/TST-positive discordant results were present in 158 (73%) of children.

976 (89%) of children in the cohort were not treated for LTBI, and observed for a median of 5.7 (range 4-7) years. No cases of active TB were seen in any untreated child during the 5587 person-years of follow-up, including among 146 TST-positive/QFT-negative children. Discordance between TST and QFT was most pronounced in BGC-vaccinated children born outside of the US who were <5 years old (93%) versus 73% in those > 5 years old, consistent with studies showing higher false positive TST results when BCG vaccine was given more recently. This highlights that widespread use of TST in foreign-born children inadvertently leads to increased and potentially unnecessary radiologic studies and LTBI treatment.

The findings of the study suggest that QFT has a high negative predictive value and supports use of IGRAs in screening BCG- and non-BCG vaccinated children, including those <5 years of age, and may prevent unnecessary imaging and treatment for LTBI in many children.

 

Written by: Saul Hymes, MD

Summary

In the June 2016 issue of the “Journal of the Pediatric Infectious Disease Society,” Jiménez-Truque and colleagues report the findings of their prospective longitudinal assessment of S. aureus colonization in student athletes [Jimenez-Truque 2016]. This prospective cohort study examined Vanderbilt University varsity athletes from August 2008 to April 2010. Nasal and oropharyngeal swabs were taken to assess for colonization with both MRSA and MSSA at enrollment and then monthly thereafter. Skin and soft tissue infections were monitored for and recorded. They enrolled 377 athletes and trainers, 224 of whom played contact sports (football, basketball, soccer, and lacrosse; defined using the AAP criteria) and 153 of whom played noncontact sports (cross country, tennis, golf, bowling, swimming, and baseball) or were trainers. Overall, 76.13% of athletes were colonized with S. aureus and 46.4% were colonized with MRSA on at least one occasion, but the prevalence of carriage was dynamic over time. Total S. aureus colonization rates ranged from 34% - 62% and MRSA rates ranged from 8% - 29%. Colonization rates were significantly higher in contact sports participants, ranging from 32% to 62% compared to 18% to 53% in non-contact participants. The colonization rate in the summer was significantly higher than that in the winter, with an OR for MRSA of 1.70 and for MSSA of 1.38. In their discussion, the authors note this was the largest prospective cohort to date of healthy college athletes. The study documented dynamic colonization that changed over the sports seasons, and overall demonstrated significant colonization rates, with real clinical implications, including an MRSA skin and soft tissue infection outbreak that occurred among the football team during their study period.

Commentary

I do not have to convince the readership of PIDSNews that antibiotic resistance is a problem. The CDC’s excellent 2013 threat report [CDC 2013] laid out the scope of the problem, and from the Joint Commission to the Centers for Medicare and Medicaid Services to the United States Executive Branch itself, official practice parameters and even mandates are starting to emerge to guide stewardship and other efforts to reduce antimicrobial resistance and infections with resistant organisms. And yet we don’t understand how best to manage and prevent these infections. While reducing antibiotic use is one key approach, understanding the dynamics of colonization with resistant organisms and how best to time (and where best to place) infection prevention efforts can be key for those organisms that are part of our commensal flora.

As the authors of the present study note, the leading cause of skin and soft tissue infections is S. aureus, a frequent skin and mucous membrane colonizer, with MRSA in particular both more virulent and harder to treat. In recent years MRSA infection rates are declining though the bulk of this is in hospital-acquired (HA) infections where a decline of 54.2% was observed between 2005-2011. Over the same period, only a 5% decline in community-acquired (CA) infections occurred [Dantes 2013]. Given this difference in the rates of decline, CA-MRSA infections are rapidly becoming the more dominant type and further contribution to our knowledge of community S. aureus colonization has the potential to further control these infections.

While the story of MRSA/MSSA infections or colonization in athletes is not a new one [Kazakova 2005], the present study contributes a number of novel findings to the field. First, its prospective nature allowed the authors to show a true seasonality to colonization, related to the particular sporting season. This is not surprising given differences in equipment use, close quarters in locker rooms, and training frequency that could allow for closer contact and spread of organisms, but having it tracked in this way may allow better resource allocation by sports teams. Currently, significant resources may be spent year round on cleaning equipment and on decolonization efforts for players. Armed with this data, programs may find that concentrating those efforts to just before the highest colonization season may be more cost-effective .

Additionally, this study further confirms that contact sports show a higher colonization risk, but it is interesting that it is still fairly high in the noncontact sports. One wonders if this is due to other modes of transmission/colonization, including cross-sports-team social gatherings, dorm living and other aspects of student life, or shared athletic facilities. This, too, is an avenue for further study, as the present study did not examine or control for these other factors. While doing so could be difficult, some form of social network tracking, as has been used for HIV transmission networks [Woodhouse 1994], could prove useful in future studies of this issue.

Finally, this study’s use of oropharyngeal swabs in addition to nasal swabs is of particular interest. The authors note they did not utilize groin or rectal swabs due to concerns of low participant acceptance of such procedures, which is reasonable. But as they show, even the dynamics of nasal vs. oropharyngeal colonization differed, with nasal carriage more common than oropharyngeal overall (31% vs 26%), but the addition of oropharyngeal swabs to nasal swabs increased the detection of S. aureus colonization by 12.4%. Clinically, a negative S. aureus swab from one site is not meaningful, and the same held true here. To truly track S. aureus or other commensal flora colonization, multiple swabs from at least a few if not all possible major sites of colonization should be used in order to maximize the accuracy of detection.

Overall the study adds to our knowledge of colonization dynamics in a population that is known to be at risk for S. aureus infection and to serve as a large reservoir of colonization. In addition, the study offers clear avenues for future research as well as ways to apply the results to day-to-day practice.

References:

  1. Jimenez-Truque N, Saye EJ, Soper N, Saville BR, Thomsen I, Edwards KM, Creech CB. “Longitudinal Assessment of Colonization With Staphylococcus aureus in Healthy Collegiate Athletes. J Pediatric Infect Dis Soc. 2016 Jun;5(2):105-13. Epub 2014 Nov 5.
  2. Antibiotic Resistance Threats in the United States, 2013. The Centers for Disease Control and Prevention, 2013. http://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf 
  3. Dantes R, Mu Y, Belflower R, Aragon D, Dumyati G, Harrison LH, Lessa FC, Lynfield R, Nadle J, Petit S, Ray SM, Schaffner W, Townes J, Fridkin S, for the Emerging Infections Program–Active Bacterial Core Surveillance MRSA Surveillance Investigators. “National Burden of Invasive Methicillin-Resistant Staphylococcus aureus Infections, United States, 2011” JAMA Intern Med. 2013;173(21):1970-1978.
  4. Kazakova SV, Hageman JC, Matava M, Srinivasan A, Phelan L, Garfinkel B, Boo T, McAllister S, Anderson J, Jensen B, Dodson D, Lonsway D, McDougal LK, Arduino M, Fraser VJ, Killgore G, Tenover FC, Cody S, Jernigan DB. “A Clone of Methicillin-Resistant Staphylococcus aureus among Professional Football Players” N Engl J Med 2005; 352:468-475.
  5. Woodhouse DE, Rothenberg RB, Potterat JJ, Darrow WW, Muth SQ, Klovdahl AS, Zimmerman HP, Rogers HL, Maldonado TS, Muth JB, Reynolds JU. “Mapping a social network of heterosexuals at high risk for HIV infection.” AIDS 1994 Sep;8(9):1331-6.

Written by: Diana Yu, PharmD and Saul Hymes, MD

PIDS, as the premier national organization representing the care of and research into infectious diseases in infants and children, takes part in many conferences every year. At both IDWeek and PAS, PIDS organizes sessions and tracks—and those are well worth attending. But sometimes it’s the smaller meetings that can be the most worthwhile—the best balance of networking and education, especially for those in a particular subfield. Dr. Rana Hamdy wrote a few months earlier in these virtual pages about the PIDS-St. Jude’s annual research conference and what it offers in particular to fellows who would attend. Here we report on the 7th Annual International Pediatric Antimicrobial Stewardship Conference.

Led by Dr. Jason Newland and organized and sponsored by PIDS as well as Children’s Mercy in Kansas City, this conference continues to be a tremendous resource for those already working in the field of stewardship and, for the first time this year, is explicitly aimed as a resource for those new to stewardship as well. The conference attendees are a nearly equal mix of pharmacists and physicians, mirroring the close collaboration between those two positions in stewardship programs nationwide. And while the conference attendance is growing every year, it remains a relatively small (think couple of hundred not couple of thousand) group and a single conference track, which makes networking and focus on content that much easier.

Indeed, networking and fostering collaboration across institutions is a key goal of the conference. The pre-conference began, as it has for the past few years, with a dinner Wednesday night and a meeting Thursday morning for representatives of institutions participating in the Sharing Antimicrobial Reports for Pediatric Stewardship (SHARPS) collaborative, a multi-center quality collaborative aimed at sharing data on antimicrobial resistance and stewardship with the goal of studying and possibly standardizing pediatric stewardship practices that work.

While the SHARPS meeting on Thursday morning was taking place and after a great Grand Rounds by Jason Newland on why antibiotic resistance (and thus stewardship) really matters, a new aspect of the official conference was introduced this year. Typically in past years the stewardship conference would begin at 1 PM, but this year a series of introductory talks were organized for Thursday morning for those new to stewardship—fellows, new PharmD’s, or those just starting a stewardship program. From speaking to a number of fellows and more junior attendees at the morning’s sessions, I learned that the sessions seemed extremely helpful, addressing some of the “why” and more broadly “how” of actually doing antimicrobial stewardship, before the rest of the conference dove deeper into details.

Thursday at lunch saw the 3rd meeting of the Pediatric Hematology-Oncology Stewardship Interest Group, or PHOASIG. Led by Dr. Josh Wolf of St. Jude, this group is organized around the idea that stewardship for patients with pediatric malignancies is fundamentally different from other stewardship areas and more data are needed to understand why and what the best approaches may be. Currently a number of multicenter collaborative research projects are in the works and those interested participants were encouraged to sign up for the email listserv.

Kicking off Thursday afternoon’s sessions, Dr. David Hyun of the Pew Foundation and Dr. Holly Maples of University of Arkansas reviewed recent publications in the primary literature on pediatric antimicrobial stewardship. Dr. Sarah Parker then spoke about the experience of starting and running a stewardship program at Children’s Hospital of Colorado. Their unique “Handshake Stewardship” program allowed them to get near universal buy-in and make stewardship an integral part of every team’s day. Then attendees heard the PIDS ASP fellowship award winners—Dr. Candace Johnson from Children’s Hospital of New York-Presbyterian on ASP activities in pediatric post-acute care facilities, Dr. Caroline Reuter on the role of MALDI-TOF and other rapid diagnostics on stewardship at Lurie Children’s Hospital in Chicago, and Dr. Matthew Thomas on a new smartphone-based antibiogram. The day ended with another new feature of the conference, a panel discussion with questions from the audience. This was a big hit. And before turning in for the evening, attendees were treated to an evening of beer and BBQ at the local Kansas City Boulevard Brewery. It was an evening of good food and good conversation.

On Friday, the second day of the conference, Dr. Eddie Stenehjem from Intermountain Healthcare began the morning by presenting the trials and tribulations of extending stewardship activities to smaller community hospitals within a healthcare system, suggesting that hospitals with fewer resources may need a “simpler” approach and accessibility to ID support. Dr. Ritu Banerjee from Mayo Clinic painted the evolving issues of multi-drug resistant Gram-negative infections, illustrating their increasing rates in children and the limited information on treatment options. Dr. Jonathan Beus from Children’s Hospital of Philadelphia highlighted how data will always be needed to evaluate stewardship efforts and to identify areas of opportunity. Finishing out the morning, Dr. Parker returned to discuss how business plans for stewardship can align with the health systems’ goals, including cost savings, safety, and regulatory requirements.

In the afternoon, Dr. Katherine Fleming-Dutra from the CDC discussed the methods and findings from the recent article released in JAMA about inappropriate antibiotic use in the outpatient setting. Oral abstract presentations from physicians and pharmacists included topics such as integrating rapid diagnostics, usage of clinical care guidelines for musculoskeletal and urinary tract infections, probiotic use to prevent C. difficile infection in hematology/oncology patients, and using electronic resources such as claims data to bolster stewardship efforts. Dr. Hyun returned to the podium to close out the final day of the meeting. He provided insight on the political landscape of antimicrobial stewardship; current challenges to meeting the requirements of the mandated stewardship policies and how the national action plan could affect different areas with limited resources.

All in all, it was, this year as it is every year, a wonderfully dense meeting. Attendees reported feeling that they not only had learned an incredible amount but that they now had a long list of even more articles and papers to review. But new collaborative connections were made, new stewardship programs received useful evidence and support and advice, and those who had not yet started a program came away with concrete notions of how and why to do so. For fellows not yet sure where in the world of Peds ID they are headed, the meeting was a valuable guide to what a career in stewardship can be like. Overall, nearly everyone seemed to enjoy themselves and were looking forward to the 8th annual meeting in 2017.